搜索
【3D打印 技术】连续纤维增材制造技术或将颠覆航空复合材料结构生产模式
2020-01-17 悉恩悉机床网


arevo 3D打印技术。


McNair 3D打印技术旨在生产高度复杂且独特的结构。


连续纤维3D打印将多个结构作为单个组件进行打印,图为带有嵌入式角撑板的飞机翼梁。使用Continuous Composite的3D工艺进行打印,随后通过手工沉积碳纤维复合材料进行蒙皮


美国轨道复合材料公司的3D打印产品


双机器人连续纤维3D打印机

  2019年3月,全球复合材料领域顶级展会JEC组委会将2019年度增材制造(3D打印)创新大奖授予美国连续复合材料公司、空军研究实验室、洛克希德·马丁公司团队,以表彰其在连续纤维3D打印技术开发方面的创新成果。连续复合材料公司是连续纤维增强3D打印技术的先驱,2012年获得了全球最早的工艺专利。自美国于2014年推出首台连续纤维3D打印机以来,该技术正在快速发展并在航空领域取得应用。随着技术的逐渐成熟和大规模推广应用,该技术或将颠覆现有复合材料无人机、低成本复合材料航空结构的生产模式。

  连续纤维3D打印技术的优势

  连续纤维3D打印技术综合利用工业机器人、3D打印末端执行器、原位检测、智能监测与机器学习等技术,快速输送、沉积连续纤维增强体,以及基体树脂并原位浸渍、固化,与传统的自动铺丝成形以及熔融沉积成形等工艺相比,自动化程度和柔性更高,对于典型的碳纤维/聚醚醚酮零件,研发周期可缩短至原来的1/30,生产速度可提高100倍。连续纤维3D打印机可以由多机器人组成柔性单元,机器人上还可添加多个3D打印末端执行器,同时打印头可支持碳纤维、凯夫拉、玻璃纤维甚至光纤和金属丝等材料,使该技术既可以用于大批量生产复合材料零件,也可以一次性打印高度复杂的几何形状或者需要极其精密制造的关键零件。

  连续纤维3D打印技术的发展方向

  当前,美欧3D打印技术开发商与机器人制造商已共同开发了一系列先进的连续纤维3D打印设备与制造工艺,主要应用方向和发展情况如下